selective breeding

selective breeding

Part 3: Genetically Modified Food News Programme from UK

2d ago
SOURCE  

Description

Click here ► http://www.foodsafetypolicy.com/videos to find out more. See ► Food Safety Policy.com Genetically modified foods (or GM foods) are foods derived from genetically modified organisms. Genetically modified organisms have had specific changes introduced into their DNA by genetic engineering techniques. These techniques are much more precise[1] than mutagenesis (mutation breeding) where an organism is exposed to radiation or chemicals to create a non-specific but stable change. Other techniques by which humans modify food organisms include selective breeding; plant breeding, and animal breeding, and somaclonal variation. GM foods were first put on the market in the early 1990s. Typically, genetically modified foods are transgenic plant products: soybean, corn, canola, and cotton seed oil. Animal products have also been developed, although as of July 2010 none are currently on the market.[2] In 2006 a pig was controversially[3][4] engineered to produce omega-3 fatty acids through the expression of a roundworm gene.[5] Researchers have also developed a genetically-modified breed of pigs that are able to absorb plant phosphorus more efficiently, and as a consequence the phosphorus content of their manure is reduced by as much as 60%.[6] Method ''Genetic modification involves the insertion or deletion of genes. In the process of cisgenesis, genes are artificially transferred between organisms that could be conventionally bred. In the process of transgenesis, genes from a different species are inserted, which is a form of horizontal gene transfer. In nature this can occur when exogenous DNA penetrates the cell membrane for any reason. To do this artificially may require transferring genes as part of an attenuated virus genome or physically inserting the extra DNA into the nucleus of the intended host using a microsyringe, or as a coating on gold nanoparticles fired from a gene gun. However, other methods exploit natural forms of gene transfer, such as the ability of Agrobacterium to transfer genetic material to plants, and the ability of lentiviruses to transfer genes to animal cells. Development The first commercially grown genetically modified whole food crop was a tomato (called FlavrSavr), which was modified to ripen without softening, by Calgene, later a subsidiary of Monsanto.[8] Calgene took the initiative to obtain FDA approval for its release in 1994 without any special labeling, although legally no such approval was required.[9] It was welcomed by consumers who purchased the fruit at a substantial premium over the price of regular tomatoes. However, production problems[8] and competition from a conventionally bred, longer shelf-life variety prevented the product from becoming profitable. A tomato produced using similar technology to the Flavr Savr was used by Zeneca to produce tomato paste which was sold in Europe during the summer of 1996.[10][11] The labeling and pricing were designed as a marketing experiment, which proved, at the time, that European consumers would accept genetically engineered foods. Currently, there are a number of food species in which a genetically modified version exists In addition, various genetically engineered micro-organisms are routinely used as sources of enzymes for the manufacture of a variety of processed foods. These include alpha-amylase from bacteria, which converts starch to simple sugars, chymosin from bacteria or fungi that clots milk protein for cheese making, and pectinesterase from fungi which improves fruit juice clarity.[26]